Concerted action of ENaC, Nedd4-2, and Sgk1 in transepithelial Na(+) transport.
نویسندگان
چکیده
The epithelial Na(+) channel (ENaC), located in the apical membrane of renal aldosterone-responsive epithelia, plays an essential role in controlling the Na(+) balance of extracellular fluids and hence blood pressure. As of now, ENaC is the only Na(+) transport protein for which genetic evidence exists for its involvement in the genesis of both hypertension (Liddle's syndrome) and hypotension (pseudohypoaldosteronism type 1). The regulation of ENaC involves a variety of hormonal signals (aldosterone, vasopressin, insulin), but the molecular mechanisms behind this regulation are mostly unknown. Two regulatory proteins have gained interest in recent years: the ubiquitin-protein ligase neural precursor cell-expressed, developmentally downregulated gene 4 isoform Nedd4-2, which negatively controls ENaC cell surface expression, and serum glucocorticoid-inducible kinase 1 (Sgk1), which is an aldosterone- and insulin-dependent, positive regulator of ENaC density at the plasma membrane. Here, we summarize present ideas about Sgk1 and Nedd4-2 and the lines of experimental evidence, suggesting that they act sequentially in the regulatory pathways governed by aldosterone and insulin and regulate ENaC number at the plasma membrane.
منابع مشابه
Serum- and glucocorticoid-regulated kinase 1 regulates ubiquitin ligase neural precursor cell-expressed, developmentally down-regulated protein 4-2 by inducing interaction with 14-3-3.
Serum- and glucocorticoid-regulated kinase 1 (SGK1) is an aldosterone-regulated early response gene product that regulates the activity of several ion transport proteins, most notably that of the epithelial sodium channel (ENaC). Recent evidence has established that SGK1 phosphorylates and inhibits Nedd4-2 (neural precursor cell-expressed, developmentally down-regulated protein 4-2), a ubiquiti...
متن کاملAldosterone-induced serum and glucocorticoid-induced kinase 1 expression is accompanied by Nedd4-2 phosphorylation and increased Na+ transport in cortical collecting duct cells.
Aldosterone plays a central role in Na+ homeostasis by controlling Na+ reabsorption in the aldosterone-sensitive distal nephron involving the epithelial Na+ channel (ENaC). Part of the effects of aldosterone is mediated by serum and glucocorticoid-induced kinase 1 (Sgk1), a Ser/Thr kinase whose expression is rapidly induced by aldosterone and that increases in heterologous expression systems EN...
متن کاملRegulation of epithelial Na+ channels by aldosterone: role of Sgk1.
1. The epithelial sodium channel (ENaC) is tightly regulated by hormonal and humoral factors, including cytosolic ion concentration and glucocorticoid and mineralocorticoid hormones. Many of these regulators of ENaC control its activity by regulating its surface expression via neural precursor cell-expressed developmentally downregulated (gene 4) protein (Nedd4-2). 2. During the early phase of ...
متن کاملThe phosphorylation of endogenous Nedd4-2 In Na+—absorbing human airway epithelial cells
Neural precursor cell expressed, developmentally down-regulated protein 4-2 (Nedd4-2) mediates the internalisation / degradation of epithelial Na(+) channel subunits (α-, β- and γ-ENaC). Serum / glucocorticoid inducible kinase 1 (SGK1) and protein kinase A (PKA) both appear to inhibit this process by phosphorylating Nedd4-2-Ser(221), -Ser(327) and -Thr(246). This Nedd4-2 inactivation process is...
متن کاملExpression of ENaC, SGK1 and Nedd4 isoforms in the cochlea of guinea pig.
It has been demonstrated that the epithelial sodium channel (ENaC) may play critical roles in (re)absorbing Na+ from apical plasma membrane in various tissues and cells. Moreover, the serum glucocorticoid-inducible kinase 1 (SGK1) and the ubiquitin-protein ligase neural precursor cell-expressed, developmentally downregulated isoforms Nedd4 are involved in ENaC regulation in response to hormones...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 283 3 شماره
صفحات -
تاریخ انتشار 2002